Neurofisiologia da termorregulação: uma breve revisão

Autores

  • Catharina Moda Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata - FACISB, São Paulo, Brasil
  • Kailanny Moyses Higasiaraguti Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata - FACISB, São Paulo, Brasil
  • Luisa Sulamita Araujo Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata - FACISB, São Paulo, Brasil
  • Adriana Paula Sanchez Schiaveto Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata - FACISB, São Paulo, Brasil

DOI:

https://doi.org/10.59255/mmed.2023.84

Palavras-chave:

Termorregulação, set point, termorreceptor, área pré-óptica (APO), receptor de potencial transiente (TRP)

Resumo

Introdução: A termorregulação corporal é crucial para a homeostasia e seu funcionamento depende do monitoramento constante da temperatura do corpo e da elaboração de respostas adequadas frente a divergências entre a temperatura captada pelos termorreceptores e aquela considerada normal pelo organismo, segundo o set point hipotalâmico. Objetivo: O objetivo desse artigo é revisar os mecanismos termorregulatórios básicos que envolvem receptores, vias neuroanatômicas, núcleos centrais e o conceito de set point hipotalâmico. Material e Métodos: Os termorreceptores consistem, em sua maioria, de canais iônicos compostos por uma família de proteínas denominada “termoTRP” que respondem a diferentes faixas de temperatura. A medula espinal e o núcleo parabraquial lateral (NPBL) constituem estações sinápticas das informações originadas nos diferentes termorreceptores, que se direcionam para a área pré-óptica (APO), estrutura que integra as informações e elabora respostas adequadas às variações de temperatura. Entretanto, a prontidão dos circuitos efetores parece depender da localização dos termorreceptores estimulados e cada um dos efetores parece apresentar diferente limiar de ativação. Estas evidências se contrapõem ao tradicional conceito de set point e sugerem uma atualização desta definição.

Downloads

Não há dados estatísticos.

Referências

Nakamura K, Morrison SF. (2008). A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71.
Terrien J, Perret M, Aujard F. (2011). Termorregulação comportamental em mamíferos: uma revisão. Frente. Biosci. 16, 1428–1444.
Batchelder P, Kinney RO, Demlow L, Lynch CB (1983). Efeitos da temperatura e interações sociais no comportamento de agrupamento em Mus musculus. Physiol. Behav. 31, 97–102.
Baldo MVC. Somestesia. In: Aires MM. Fisiologia. 4 ed. Rio de Janeiro: Guanabara Koogan; 2012. p. 266-278.
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62: 381– 404, 2010.
Caterina MJ. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292: R64 –R76, 2007.
Schepers RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev 34: 177–184, 2010.
Hemingway A, Forgrave P, Birzis L. (1954). Shivering suppression by hypothalamic stimulation. J. Neurophysiol. 17, 375–386.
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448: 204 –208, 2007.
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron. 2018 Apr 4;98(1):31-48. doi: 10.1016/j.neuron.2018.02.022. PMID: 29621489; PMCID: PMC6034117.
Latorre R, Brauchi S, Madrid R, Orio P. A cool channel in cold transduction. Physiology 26: 273–285, 2011.
Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, McKemy DD. neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848.
Pogorzala LA, Mishra SK, Hoon MA. (2013). The cellular code for mammalian thermosensation. J. Neurosci. 33, 5533–5541.
Yarmolinsky DA, Peng Y, Pogorzala LA, Rutlin M, Hoon MA, Zuker CS. (2016). Coding and Plasticity in the Mammalian Thermosensory System. Neuron 92, 1079–1092.
Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal, P., et al. (2012). Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32, 2086–2099.
Gavva NR, Davis C, Lehto SG, Rao S, Wang W, Zhu, DX. (2012). Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol. Pain 8, 36.
Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TL, Hergarden AC, Story GM.,keratinocytes. Science 296, 2046–2049.
Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L., et al. (2002). TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190.
Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos- Santiago I, Xie Y, et al. (2002). TRPV3 is a calciumpermeable temperature-sensitive cation channel. Nature 418, 181–186.
Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. (2002). Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414.
Huang SM, Li X, Yu Y, Wang J, Caterina M.J. (2011). TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol. Pain 7, 37.
Hori T. (1984). Capsaicin and central control of thermoregulation. Pharmacol. Ther. 26, 389–416.
Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398: 436 – 441, 1999.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816 – 824, 1997.
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. (2013). TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77, 667–679.
Tansey EA, Johnson CD. Recent advances in thermoregulation. Adv Physiol Educ. 2015 Sep;39(3):139-48. doi: 10.1152/advan.00126.2014. PMID: 26330029.
Nakamura K. Central circuities for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301: R1207–R1228, 2011.
Kobayashi S, Hori A, Matsumura K, Hosokawa H. (2006). Point: Heatinduced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. Am. J. Physiol. Regul. Integr. Comp.Physiol. 290, R1479–R1480.
Wechselberger M, Wright CL, Bishop GL, Boulant JA. Ionic currents and conductance-based models for hypothalamic neuronal sensitivity. Am J Physiol Regul Integr Comp Physiol 291: R518 –R529, 2006.
Hylden JL, Anton F, Nahin RL. (1989). Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28, 27–37.
Craig AD, Bushnell MC, Zhang ET, Blomqvist A. (1994). A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773.
Morrisson SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci 16: 74 –104, 2011.
Yahiro T, Kataoka N, Nakamura Y, Nakamura K. (2017). The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Sci. Rep. 7, 5031.
Kobayashi A, Osaka T. (2003). Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Arch. 446, 760–765.
Nakamura, K., and Morrison, S.F. (2010). A thermosensory pathway mediating heat-defense responses. Proc. Natl. Acad. Sci. USA 107, 8848–8853.
Ishiwata T, Saito T, Hasegawa H, Yazawa T, Kotani Y, Otokawa H, Yazawa T, Kotani Y, Otokawa M, Aihara Y. (2005). Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures. Brain Res. 1048, 32–40.
Lipton JM. (1968). Effects of preoptic lesions on heat-escape responding and colonic temperature in the rat. Physiol. Behav. 3, 165–169.
Osaka T. (2004). Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R306–R313.
Satinoff E, Valentino D, Teitelbaum P. (1976). Thermoregulatory colddefense deficits in rats with preoptic/anterior hypothalamic lesions. Brain Res. Bull. 1, 553–565.
Van Zoeren JG, Stricker EM. (1976). Thermal homeostasis in rats after intrahypothalamic injections of 6- hyroxydopamine. Am. J. Physiol. 230, 932–939.
Andersson B, Grant R, Larsson S. (1956). Central control of heat loss mechanisms in the goat. Acta Physiol. Scand. 37, 261–280.
Carlisle H.J. (1966). Behavioural significance of hypothalamic temperaturesensitive cells. Nature 209, 1324–13.
Magoun HW, Harrison F, Brobeck JR, Ranson SW. (1938). Activation of Heat Loss Carlisle, H.J., and Laudenslager, M.L. (1979). Observations on the thermoregulatory effects of preoptic warming in rats. Physiol. Behav. 23, 723–732.
Morrison SF and Nakamura K. Central Mechanisms for Thermoregulation; Annu. Rev. Physiol. 2019. 81:285–308
Bachtell RK, Tsivkovskaia NO, and Ryabinin, A.E. (2003). Identification of temperature-sensitive neural circuits in mice using c-Fos expression mapping. Brain Res. 960, 157–164.
Bratincsa´ kA, Palkovits M. (2004). Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience 127, 385–397.
Harikai N, Tomogane K, Sugawara T, Tashiro S. (2003). Differences in hypothalamic Fos expressions between two heat stress conditions in conscious mice. Brain Res. Bull. 61, 617–626
Yoshida K, Konishi M, Nagashima K, Saper CB, Kanosue K. (2005). Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter. Neuroscience 133, 1039.
Magoun HW, Harrison F, Brobeck JR, Ranson SW. (1938). Activation of Heat Loss Mechanisms by Local Heating of the Brain. J. Neurophysiol. 1, 101–114.
Griffin JD, Saper CB, Boulant JA. Synaptic and morphological characteristics of temperature-sensitive and-insensitive rat hypothalamic neurones. J. Physiol. Lond., 537:521-35, 2001.
Nagashima K, Nakai S, Tanaka M, Kanosue K. Neuronal circuities involved in thermoregulation. Auton. Neurosci., 85:18-25, 2000.
Nakamura K, Morrison SF. (2007). Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136.
Hammel HT. (1968). Regulation of internal body temperature. Annu. Rev. Physiol. 30, 641–710.
Nakamura K, Morrison SF. (2010). A thermosensory pathway mediating heat-defense responses. Proc. Natl. Acad. Sci. USA 107, 8848–8853.
Geerling JC, Kim M, Mahoney CE, Abbott SB, Agostinelli LJ, Garfield AS, Krashes MJ, Lowell BB, Scammell TE. (2016). Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R41–R54.
Branco LGS, Steiner AA, Bícego KC. Regulação Neuroendócrina da Temperatura Corporal. In: Rodrigues JA, Moreira AC, Elias LLK, Castro M. Neuroendocrinologia Básica e Aplicada. Rio de Janeiro: Guanabara Koogan; 2005. p. 64-80.
Guyton AC, Hall JE. Textbook of Medical Physiology (13th ed.). Philadelphia, PA: Elsevier Saunders, 2011.
Morrisson SF, Nakamura K. A thermosensory pathway mediating heatdefense responses. Proc Natl Acad Sci USA 107: 8848 – 8853, 2010.
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292: R37–R46, 2007.
McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ. Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109: 17–33, 2010.
Ootsuka Y, McAllen RM. Comparison between two rat sympathetic pathways activated by cold defense. Am J Physiol Regul Integr Comp Physiol 291: R589 –R595, 2006.

Downloads

Publicado

2023-12-27

Como Citar

Moda, C., Higasiaraguti, K. M., Araujo, L. S., & Schiaveto, A. P. S. (2023). Neurofisiologia da termorregulação: uma breve revisão. Manuscripta Medica, 6, 3–10. https://doi.org/10.59255/mmed.2023.84

Edição

Seção

Ciências Biológicas

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.